

Applikationen & Tools

Answers for industry.

Cover

WinAC CAN Basis driver

COM168 extension board
Microbox IPC427B/C on-board CAN
Nanobox IPC227D on-board CAN

V1.4.0 July 2012

2
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Industry Automation and Drives Technologies Service & Support Portal
This article is taken from the Service Portal of Siemens AG, Industry Automation
and Drives Technologies. The following link takes you directly to the download
page of this document.
http://support.automation.siemens.com/WW/view/en/48281517

If you have any questions concerning this document please e-mail us to the
following address:
online-support.automation@siemens.com
applications.aud.koe.nrh.rd@siemens.com

http://support.automation.siemens.com/WW/view/en/%3CItem-ID%3E
mailto:online-support.automation@siemens.com
mailto:applications.aud.koe.nrh.rd@siemens.com

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 3

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

s

SIMATIC
WinAC CAN Basic Driver

Operator Manual

Automation Task
 1

Automation Solution
 2

Installation
 3

Simatic projecting
 4

Step7 user interface
 5

Example application
 6

Error codes
 7

Related Literature
 8

History
 9

 10

 11

 12

Warranty and Liability

4
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Warranty and Liability
Note The Application Examples are not binding and do not claim to be complete

regarding the circuits shown, equipping and any eventuality. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for ensuring that
the described products are used correctly. These application examples do not
relieve you of the responsibility to use safe practices in application, installation,
operation and maintenance. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time without prior notice.
If there are any deviations between the recommendations provided in these
application examples and other Siemens publications – e.g. Catalogs – the
contents of the other documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Table of Contents

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 5

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Table of Contents
Warranty and Liability..4
1 Automation Task ..6

1.1 Overview...6
1.2 Needed Knowledge ...6
1.3 Required Hardware and Software Components6

2 Automation Solution ..8
2.1 Functional range..8
2.2 High level CAN protocols ...9
2.3 Version of the driver...9

3 Installation ..11
3.1 Quickstart ..11
3.2 Installation HW “Microbox CAN on-board interface” Windows XPe...12
3.3 Install HW “COM 168” Windows XP ...14
3.3.1 Configure PCI slot ...14
3.3.2 Install COM168 as RTX device ..14
3.3.3 Check COM168 installation with “Com168Scan.rtss”........................23
3.4 Install HW “Nanobox CAN on-board Interface” (WES 7)...................24
3.4.1 Install CAN interface as RTX device ..24
3.4.2 Check installation with “CCanScan.rtss”...33
3.5 Installation WinAC driver on runtime system34
3.6 Installation WinAC driver on engineering system..............................35

4 Simatic projecting for CAN driver..36
4.1 Component Configurator on runtime system36
4.2 Simatic Manager HW Config..36

5 The Step7 user interface ..37
5.1 Multi instance FBs ...37
5.2 Initialisation of WinAC CAN Basis driver ..38
5.2.1 Initialisation with CAN_INIT_SJA1000..40
5.2.2 Additional information in the instance DB of CAN_INIT_SJA100041
5.2.3 Initialisation with CAN_INIT_COM168..42
5.2.4 Additional information in the instance DB of CAN_INIT_COM168.....44
5.2.5 Initialisation with CAN_INIT_C_CAN..45
5.2.6 Additional information in the instance DB of CAN_INIT_C_CAN.......46
5.3 Send CAN telegrams with CAN_SEND..47
5.4 Receive CAN telegrams with CAN_RECV..48
5.5 Get CAN status with CAN_GET_STATUS49

6 Examples for applications ...50
6.1 Example 1 – CAN send/receive ...51
6.2 Example 2 – process image with CANopen devices.........................53

7 Error Codes ..56
7.1 Error codes of WinAC ODK..56
7.2 Special error codes of the CAN Basis driver.....................................58

8 Related Literature...61
8.1 Bibliography...61
8.2 Internet Link Specifications ..61

9 History ..62

 1 Automation Task

6
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

1 Automation Task
1.1 Overview

There are projects with SIMATIC PLCs and CAN peripheral components. When
using industrial PCs there are some possibilities to integrate CAN interfaces.
The present driver enables the usage of selected CAN interfaces with the Soft-PLC
SIMATIC WinAC RTX.
The CAN interface is implemented as Layer-2 interface (send / receive).

The driver supports the following CAN interfaces:
 COM168 board with 2 CAN interfaces (PCI version)
 On-board CAN interface of Microbox PC427B/C (SJA1000) *1)
 On-board CAN interface of Nanobox IPC227D (Bosch C_CAN) *2)

*1) A CAN on-board interface is an option when ordering the Microbox PC427B/C.
*2) A CAN on-board interface is an option when ordering the Nanobox IPC227D.

1.2 Needed Knowledge

To understand this document the knowledge of the following information is needed:
 Simatic WinAC RTX
 Simatic Manager or TIA Portal
 CAN protocol, layer 2

1.3 Required Hardware and Software Components

The application was generated with the following components:

Hardware components
 Simatic Microbox PC 427B (Celeron M, 900 MHz, 512 MB RAM, 2 GB Flash,

CAN on-board) with CAN on-board interface
Windows CP embedded SP2

 COM168 card (PCI104)
 Nanobox IPC227D with CAN on-board interface

WES7 (Windows Embedded Standard 7)

NOTICE The older HW revision of COM168 in PC/104+ form is not supported!

 1 Automation Task

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 7

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Standard software components
 WinAC RTX 2010 Update 2
 Step7 V5.5

or
 TIA Portal V11 SP2

NOTICE The driver for the Nanobox IPC227D CAN on-board interface is approved
for WinAC RTX 2010 Update 2!

Sample files and projects
The following list includes all files and projects that are used in this example.

Table 1-1 Files of this driver package

Component Note

Doc\ This document in English and German
Drivers\ Realtime driver for all supported CAN interface types incl.

Setup_xxx.bat file for installation on WinAC computer
S7_V5x_Example\ Step7 V5.x example projects
S7_V11_Example\ Step7 V11 (TIA Portal) example projects
Tools\ Helper tools (e.g. COM168-Scan)

 2 Automation Solution

8
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

2 Automation Solution
2.1 Functional range

The following functions are supported by the WinAC CAN Basis driver:
 Initialise CAN interface with given baud rate
 Send CAN messages
 Receive CAN messages
 Get status of CAN interface

The driver supports the pre-defined CANopen baud rates. The COM168 additional
supports user-defined baud rates.

The CAN basis driver does not include filter functionality for CAN identifiers.
Normally the WinAC should be the CAN controller, so it should receive all CAN
messages.

The function blocks in the Step7 project do not access the CAN interface hardware
directly. There is a real-time CAN driver working in background. The Step7 function
blocks and the real-time driver exchange data via FIFO memory. The CAN driver
puts received CAN messages into the Rx-FIFO and picks up CAN messages from
the Tx-FIFO and send the messages. The function blocks of the Step7 program
only access this both FIFO memories.

Figure 2-1 Overview WinAC CAN Basis driver

This de-coupling is needed because to prevent blocking OB1 when sending many
CAN messages at the end of the cycle.
On the other hand there is a drawback of this de-coupling – errors like wire break is
not recognized directly. The function blocks are informed about such problems two
send commands after.
If the function block CAN_SEND is used very often in a short time, the CAN real-
time driver sends the messages out of the buffer one after another. Thus there
could be a little delay.

 2 Automation Solution

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 9

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

If the CAN real-time driver receives many CAN messages and the CAN_RECV is
called rarely there are two problems: the CAN_RECV gets old telegrams and there
could be an overflow of the internal RxFIFO memory (with error code).

 !
Attention

The driver supports only one CAN hardware at one time – either the on-
board CAN interface of Microbox, the on-board CAN interface of Nanobox
or the COM168 card. Usage of more than one type at same time is not
supported!

2.2 High level CAN protocols

The driver supports the layer 2 functions (send/receive), only. As part of the
application other CAN protocols may be implemented.

It is possible to communicate with CANopen devices, too. In that case the user has
to process the received CAN messages and has to compose the CANopen
telegrams to be sent.

There is one interesting parameter of the CAN initialisation – the “shutdown
telegram”. This telegram is sent automatically when the WinAC changes from RUN
to STOP. This “shutdown telegram” could be used for the CANopen telegram “Pre-
operational state”. Thus all devices would switch to “pre-operational” state
immediately when the WinAC changes to STOP.

The WinAC CAN driver package includes an example with using CANopen digital
E/A modules with this CAN layer 2 driver.

2.3 Version of the driver

Check driver version with Windows operating system
The registered driver RTDLL is located in the system directory, e.g.
 C:\Windows\Rtss\Rtdll
You can identify the version of the driver RTDLL in the file properties (Windows
explorer right click properties)

 2 Automation Solution

10
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 2-2 Version of the driver RTDLL

NOTE Because of an issue of IntervalZero RTX 9.x the file version of RTDLLs are not
shown in the properties dialog under Windows 7 / WES7.

It works well under Windows XP / WES2009.

Check driver version in Step7 program
In the instance data block of CAN_INIT_sss it is possible to read the version of the
driver RTDLL and the version of the Step7 driver function blocks.
 C_IF.S7_VERSION Version of Step7 driver function blocks
 C_IF.DLL_VERSION Version of driver RTDLL

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 11

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3 Installation
3.1 Quickstart

Run-Time system (PC with WinAC)

 Install CAN hardware
 Setup CAN interface as RTX ressource
 Install CAN real-time driver with right install routine:

Setup_Com168.bat for COM168
Setup_SJA1000.bat for on-board CAN interface of Microbox
Setup_CCan.bat for on-board CAN interface of Nanobox

Engineering System (PC with Step7 / TIA Portal)
 Adapt the Step7 or TIA portal example project and use it
 Choose the right INIT-FB matching your CAN hardware in both OB1 and

OB100!

NOTICE In the provided example applications all three different INIT function blocks
are included in OB1 and OB100. You have to utilize the right one fort he
used hardware.

 3 Installation

12
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.2 Installation HW “Microbox CAN on-board interface”
Windows XPe

The following screen shots are created under Windows XP embedded. The
processing under Windows 7 is comparable.

The on-board CAN interface of the Microbox PC427B/C is connected as ISA
device. There are valid settings by default:
 IRQ. 10
 Base address: 0x5400

You can activate the CAN interface in the BIOS (Main / Hardware). It is possible to
change the base address if needed.

Figure 3-1 BIOS Microbox PC427B

The next step is to check, if the CAN interface got an exclusive interrupt (as in
default settings).

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 13

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-2 CAN on-board interface in the Windows Device Manager (Win XP)

These settings (IRQ and base address) are parameters for the driver initialisation
(FB CAN_INIT_SJA1000).

 3 Installation

14
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.3 Install HW “COM 168” Windows XP

The following screen shots are created under Windows XP embedded. The
processing under Windows 7 is comparable.

 !
Attention

Only the new HW revision in PCI104 is supported!

The old one in PC/104+ is not supported by the driver.

 !
Attention

Before installing the COM168 you have to check the DIP switch (HEX
switch) for the right PCI lane!

3.3.1 Configure PCI slot

The COM168 is a PCI104 device. Thus one have to adjust the used PCI slot by
HEX switch (see operator manual of COM168 Rev. 2).

Figure 3-3 HEX switch for selecting PCI slot of COM168

3.3.2 Install COM168 as RTX device

The COM168 driver is realized as realtime driver for the Windows realtime
extension IntervalZero RTX (Realtime eXTension). That’s why the CAN board has
to be installed as RTX device.

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 15

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Cancel Windows Plug and Play manager
Windows Plug and Play Manager recognized the new hardware and tries to install
a new driver. This dialogue has to be canceled.

Figure 3-4 Windows XP Plug and Play Manager

 3 Installation

16
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Find COM168 in the device manager
The device manager can be started over the system properties.

Figure 3-5 start device manager Win XP

It should exist only one device with a question mark: „Other PCI Bridge Device“.
This is the COM168 board.

Figure 3-6 Unknown device „Other PCI Bridge Device“

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 17

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Characteristic properties of the COM168 board
On the properties page one can see characteristic properties like the slot, bus,
device and function or Vendor and Device-ID.

Figure 3-7 Characteristic properties of COM168

 !
Attention

For the Microbox PC427B only PCI Slot 1 and 2 are valid!

There is no exclusive interrupt line for PCI Slot 3. Slot 4 is not allowed.

 3 Installation

18
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Settings in RTX Properties (Windows XP)
Via control panel of the Windows operating system you can reach the RTX
Properties.

Figure 3-8 RTX Properties in control panel

Select the tab “Plug and Play”. You have to remove the check mark show filtered
list. Then you can see the COM168 (Other PCI Bridge Device).

Figure 3-9 Plug and Play of the RTX Properties

Via the device properties you can check whether it’s the right device (slot, bus, ...).

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 19

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-10 Device Properties in dialogue RTX Properties

Next you choose the device with the right mouse bottom and click on
 Add RTX INF support.

Abbildung 3-11 Adding RTX INF support to the COM168

NOTICE You must press the „Apply“ button to activate the „RTX INF Support“!

 3 Installation

20
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Uninstall the device in the Windows device manager
Next you go again to the Windows device manager in order to uninstall the
COM168 („Other PCI Bridge Device“ with question mark).

Figure 3-12 (Windows) device Uninstallation (Win XP)

The device disappears firstly from the device manager.

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 21

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Installation of device as RTX device
Afterwards you choose at the menu Action Scan for new Hardware (This
works only, if you have clicked into the main window of the device manager
before).
Now the COM168 will be registered as RTX device automatically.

Figure 3-13 Scan for hardware changes (Win XP)

Now the COM168 is automatically recognized as RTX device.

Figure 3-14 COM168 as RTX device (Win XP)

To be safe you should check with the device properties whether it’s the right
device.

 3 Installation

22
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-15 Properties as PCI device (Win XP)

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 23

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.3.3 Check COM168 installation with “Com168Scan.rtss”

The WinAC CAN basis driver includes a tool to check the installed COM168 board.
The tool Com168Scan.rtss is located in the \tools\ directory. It is a RTX
application. On a computer with installed Ardence RTX you can start this
application with double click. This is the case on all computers with WinAC RTX.

Figure 3-16 Output of Com168Scan.rtss

<Com168Scan> <Release-Version>

START

COM168 found:

bus <6> slot/dev <12> func. <0> INT <20>

vendor <0x10B5> dev <0x9030> subvendor <0x0000> subsystem
<0x3413>

COM168 Info:

Software-Version: <0x00920000>

Hardware-Version: <0x01010000>

Flashbootloaderversion: <0x01060000>

FPGA-Version: <0x01050000>

END

 3 Installation

24
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.4 Install HW “Nanobox CAN on-board Interface” (WES 7)

The following screen shots are created under Windows 7. The processing under
Windows XP embedded is comparable.

The CAN interface of the Nanobox IPC227D is connected to the system as PCIe
device. It supports MSI (Message-Signaled Interrupts). The real-time driver realizes
the interrupt processing with MSI.

3.4.1 Install CAN interface as RTX device

The driver for the CAN interface of the Nanobox IPC227D is realized as real-time
driver for the Windows real-time extension IntervalZero RTX (Realtime
eXTension). That’s why the CAN interface has to be installed as RTX device.

NOTICE If the CAN interface is not setup as RTX device, the starting of the RTX
driver will cause a program failure.

Find CAN interface in the device manager
The device manager can be started over the system properties.

Figure 3-17 start device manager (WES 7)

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 25

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

The CAN interface is located in the “System devices” section.

Figure 3-18 CAN interface in the Device Manager (WES 7)

Characteristic properties of the CAN interface
On the properties page one can find characteristic properties of the device, like the
slot, bus, device and function or the device and vendor ID.

 3 Installation

26
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-19 Characteristic device properties

Settings in the RTX Properties
Via control panel of the Windows operating system you can reach the RTX
Properties.

Figure 3-20 RTX Properties in control panel (WES 7)

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 27

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-21 RTX Properties, tab “Hardware”

In the tab “Hardware” select the button “Settings …” under the “Devices”. You have
to remove the check mark show filtered list. Then you can see the CAN interface.

Figure 3-22 Plug and Play settings of the RTX Properties (WES 7)

Via the device properties you can verify whether it’s the right device (slot, bus, ...).

 3 Installation

28
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-23 Device Properties in dialogue RTX Properties

Next you choose the device with the right mouse bottom and click on
 Add RTX INF support.

Abbildung 3-24 Adding RTX INF support to the COM168

NOTICE You must press the „Apply“ button to activate the „RTX INF Support“!

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 29

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Uninstall the device in the Windows device manager
Next you go again to the Windows device manager in order to uninstall the
COM168 („Other PCI Bridge Device“ with question mark).

Figure 3-25 Device Uninstallation (WES 7)

The device disappears firstly from the device manager.

 3 Installation

30
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Installation of device as RTX device
Afterwards you choose at the menu Action Scan for new Hardware.
Now the CAN interface will be registered as RTX device automatically.

Figure 3-26 Scan for hardware changes (WES 7)

Now the CAN interface is automatically recognized as RTX device.

Figure 3-27 CAN interface as RTX device (WES 7)

To be safe you should check with the device properties whether it’s the right
device.

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 31

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-28 Properties as PCI device (WES 7)

The “Pnp Device Settings” of the “RTX properties” now show the CAN interface in
the “RTX” section.

Figure 3-29 CAN interface as RTX device in the RTX devices dialog

 3 Installation

32
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

The device properties (right mouse click / properties) show the MSI capability of
this device.

Figure 3-30 MSI capability in the RTX device properties

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 33

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.4.2 Check installation with “CCanScan.rtss”

The WinAC CAN basis driver includes a tool to check the installed CAN interface.
The tool CCanScan.rtss is located in the \tools\ directory. It is a RTX application.
On a computer with installed Ardence RTX you can start this application with
double click. This is the case on all computers with WinAC RTX.

Figure 3-31 Output of CCanScan.rtss

====================================
Start <CCanScan> V1.4.0.0

(1) Searching for C_CAN interface ...
PCI information of C_CAN interface:
 Vendor ID <0x8086> Device ID <0x8818>
 Bus<2> Dev<12> Func<3>
(2) Initialize C_CAN interface ...
(3) Configure CAN parameter: <Loopback @ 1 MBit> ...
(4) Sending CAN telegramm (Loopback mode) ...
(5) Receiving CAN telegramm (Loopback mode) ...

Scan and test of C_CAN interface:
 <SUCCESS>

(6) Clean-Up C_CAN interface ...
End <CCanScan>
====================================

The shown PCI information should fit the information of the Windows device
manager (or RTX properties).

NOTICE Before starting CCanScan.rtss the first time, the CAN interface must be
set-up as RTX device! (see chapter 3.4.1)

 3 Installation

34
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

3.5 Installation WinAC driver on runtime system

The installation of the WinAC CAN driver is limited to the registration of the driver
realtime DLL. One has to use the setup routine corresponding to the available type
of CAN interface.

Table 3-1 Setup depending on the type of CAN interface

CAN interface Setup file

Microbox IPC 427B/C on-board Setup_SJA1000.bat
COM168 PCI Steckkarte Setup_Com168.bat
Nanobox IPC 227D on-board Setup_CCan.bat

If a version of the driver is just installed, a message will be shown. Please confirm
the “Yes” button.

Figure 3-32 Information, if a driver is just installed (Nanobox / WES7)

You can check the installation with the command rtsskill. At the registered DLLs
you must see the WinLcCanBasCom168.rtdll, WinLcCanBasSja1000.rtdll or
WinLcCanBasCCan.rtdll.

 3 Installation

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 35

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Figure 3-33 Installed real-time drivers (Nanobox / WES7)

3.6 Installation WinAC driver on engineering system

On the engineering system only this documentation and the Step7 or TIA portal
example program is needed. You can copy the needed function blocks and user
defined types from this Step7 / TIA portal example to you own application.
There is no need to execute the batch file setup_xxx.bat on the engineering
system!

NOTICE In the provided example applications all three different INIT function blocks
are included in OB1 and OB100. You have to utilize the right one fort he
used hardware.

 4 Simatic projecting for CAN driver

36
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

4 Simatic projecting for CAN driver
4.1 Component Configurator on runtime system

 !

Attention

The CAN interface is NOT part of the station configuration of the station
configuration of the runtime system.

All settings are done with DBs/FBs.

4.2 Simatic Manager HW Config

 !

Attention

The CAN interface is NOT part of the station hardware configuration of the
Simatic Manager project.

All settings are done with DBs/FBs.

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 37

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5 The Step7 user interface
To use the CAN functionality from the WinAC program there are some function
blocks and user defined types in the example project. Of course you can change
the numbers of the FBs, DBs and UDTs.
FB61000 – CAN_INIT_COM168
FB61001 – CAN_INIT_SJA1000
FB61002 – CAN_SEND
FB61003 – CAN_RECV
FB61004 – CAN_GET_STATUS
FB61005 – CAN_INIT_CCAN

Only the initialisation function block depends on the used hardware platform
Microbox (SJA1000), Nanobox (C_CAN) or COM168.

5.1 Multi instance FBs

The driver FBs are not multi instancable!

Explanation:
The WinAC driver is realised with the WinAC ODK (Open Develeopment Kit). All
driver FBs need the reference to the driver RTDLL (ODK handle). The Init-FB
distributes this ODK handle to all the instance DBs of the driver FBs and does
some initialisation within the instance DBs.

 5 The Step7 user interface

38
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.2 Initialisation of WinAC CAN Basis driver

The initialisation function block has to be called before any other driver FB call.
This FB loads the driver RTDLL. It distributes the information about the ODK
handle to the instanced DBs of all driver FBs. The FB reads the information about
the installed COM interfaces (on-board or COM168). This data is stored in the
instance DB of this FB.
Additional this function block initialises the CAN interface(s).

The RTX driver checks the version of the Step7 FBs. Only for a matching version
the FB call is done without error.

There are three different function blocks for initialisation, depending on the used
hardware (SJA1000 / C_CAN / COM168). You have to use the matching function
block.

 !
Attention

The driver supports either the on-board CAN interface Microbox (SJA1000),
Nanobox (C_CAN) or the COM168 card. Thus you may call only one of the
three initialisation function blocks only!

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 39

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Coding of the RTDLL version
The version of the RTDLL is coded hexadecimal. The last digit of the DWORD is
used to label the Debug or Release version.
 D – Debug-Version
 A – Release-Version

Figure 5-1 Examples for RTDLL version in instance DB of CAN_INIT_sss

"iDB_CAN_INIT_COM168".C_IF.DLL_VERSION HEX DW#16#0001000D

 \ /|

 \/ +- Debug

 +---- V 1.0.0.0

"iDB_CAN_INIT_SJA1000".C_IF.DLL_VERSION HEX DW#16#0001100A

 \ /|

 \/ +- Release

 +---- V 1.1.0.0

Note The data of the instance DB (e.g. driver version) is valid after an error-free call of
CAN_INIT_xxx only!

 5 The Step7 user interface

40
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.2.1 Initialisation with CAN_INIT_SJA1000

If you want to use the CAN on-board interface of the Microbox PC427B you have to
call this function block.

 !
Attention

The function block CAN_INIT_SJA1000 may not be used at same time as
INIT_CAN_COM168 because the driver does support only one CAN
hardware at one time.

Table 5-1 Parameter des FBs CAN_INIT_SJA1000

Parameter In/
Out

Type Description

STARTUP In Bool Flag for first call
DB_CAN_SEND In Block_DB Instance DB of FB CAN_SEND *1)
DB_CAN_RECV In Block_DB Instance DB of FB CAN_RECV *1)
DB_CAN_GET_STATU
S

In Block_DB Instance DB of FB CAN_GET_STATUS *1)

REQ In Bool Request for INIT CAN (positive edge)
USE_SHUTDOWN In Bool Use shutdown message
CAN_PARAM In UDT_CAN_C

FG_SJA1000
Parameters of CAN interface SJA1000

SHUTDOWN_MSG In UDT_CAN_M
SG *2)

CAN message sent in transition RUN
STOP

BUSY Out BOOL Set; if the FB is still busy
DONE Out BOOL Is set, if the FB has finished (with error or

without error)
ERROR Out BOOL If set, an error occurred. STATUS gives

detailed information about the error.
STATUS Out WORD Error information

*1) The numbers of the instance DBs have to be given with the first call (STARTUP
= TRUE).
*2) See Table 5-12 “UDT for CAN telegram UDT_CAN_MSG”, pg. 47

Table 5-2 Definition of UDT UDT_CAN_CFG_SJA1000

Parameter In/
Out

Type Description

SJA1000_BASE_ADDR In Word Base address of SJA1000 (see BIOS settings)
SJA1000_IRQ_NO In Int Interrupt number of SJA1000 (see Windows

device manager)
SJA1000_BAUD_CAN In Int Baud rate for CAN *1)

*1) The baud rate for the CAN interface is defined by the following values:

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 41

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

 0 - 1 MBit/s
 1 - 800 KBit/s (not supported by SJA1000)
 2 - 500 KBit/s
 3 - 250 KBit/s
 4 - 125 KBit/s
 5 - 100 KBit/s
 6 - 50 KBit/s
 7 - 20 KBit/s (not supported by SJA1000)

5.2.2 Additional information in the instance DB of CAN_INIT_SJA1000

The user can obtain additional information in the instance DB of the INIT function
block:

Table 5-3 Informationen of instance DB of CAN_INIT_SJA1000

Name In/Out Bemerkung

C_IF.FB_VERSION Out Version of Step7-FBs of the driver
C_IF.DLL_VERSION In Version driver RTDLL

 5 The Step7 user interface

42
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.2.3 Initialisation with CAN_INIT_COM168

If you want to use the COM168 card you have to call this function block.

 !
Attention

The function block CAN_INIT_COM168 may not be used at same time as
INIT_CAN_SJA1000 because the driver does support only one CAN
hardware at one time.

Table 5-4 Parameter of FB CAN_INIT_COM168

Parameter In/
Out

Typ Beschreibung

STARTUP In Bool Flag for first call
DB_CAN_SEND In Block_DB Instance DB of FB CAN_SEND *1)
DB_CAN_RECV In Block_DB Instance DB of FB CAN_RECV *1)
DB_CAN_GET_STATU
S

In Block_DB Instance DB of FB CAN_GET_STATUS *1)

REQ In Bool Request for INIT CAN (positive edge)
USE_SHUTDOWN_0 In Bool Use shutdown message #0
USE_SHUTDOWN_1 In Bool Use shutdown message #1
CAN_PARAM In UDT_CAN_C

FG_COM168
Parameter of the two CAN interfaces of
COM168

SHUTDOWN_MSG0 In UDT_CAN_M
SG

CAN message sent in transition RUN
STOP via CAN #0

SHUTDOWN_MSG1 In UDT_CAN_M
SG *2)

CAN message sent in transition RUN
STOP via CAN #1

BUSY Out BOOL Set; if the FB is still busy
DONE Out BOOL Is set, if the FB has finished (with error or

without error)
ERROR Out BOOL If set, an error occurred. STATUS gives

detailed information about the error.
STATUS Out WORD Error information

*1) The numbers of the instance DBs have to be given with the first call (STARTUP
= TRUE).

*2) See Table 5-12 “UDT for CAN telegram UDT_CAN_MSG”, pg. 47

Table 5-5 Definition of UDT UDT_CAN_CFG_COM168

Parameter In/
Out

Typ Beschreibung

BAUD_CAN_0 In Int Baud rate for CAN channel #0 *1)
BAUD_CAN_1 In Int Baud rate for CAN channel #1 *1)
BTRON_CAN_0 In Bool CAN channel 0:

0 – use pre-defined baud rate (see above)
1 – use bit timing register for user defined-

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 43

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

Parameter In/
Out

Typ Beschreibung

baud rate
BTRON_CAN_1 In Bool CAN channel 1:

0 – use pre-defined baud rate (see above)
1 – use bit timing register for user defined-
baud rate

BTR In Array[
0..1]

Bit timing register for user defined baud rate *2)

 PRESDIV In Byte Prescaler division factor
 RJW In Byte Resyncronization jump width: 0..3
 PSEG1 In Byte Phase buffer segment 1: 0..7
 PSEG2 In Byte Phase buffer segment 2: 0..7
 PROPSEG In Byte Propagation segment: 0..7
 SETVAL_
 ERRFRAMCTR

In Word Set Value Error Frame Counter

*1) Pre-defined baud rates
*1) The baud rate for the CAN interface is defined by the following values:
 0 - 1 MBit/s
 1 - 800 KBit/s
 2 - 500 KBit/s
 3 - 250 KBit/s
 4 - 125 KBit/s
 5 - 100 KBit/s
 6 - 50 KBit/s

Baud rate 20 and 10 Kbit/s are not supported by the COM168 card!

*2) Bit Timing Register (BTR) for user defined baud rates
The parameters of the Bit Timing Register (BTR) define the timing behavior of the
CAN signals and (indirect) the baud rate.
For 200 kBit/s the following settings are possible:

Table 5-6 Alternative settings of Bit Timing Register for 200 kBit/s

PRESDIV PROPSEG PSEG1 PSEG2 RJW SP

0x13 0x7 0x7 0x7 2 68%
0x18 0x7 0x7 0x2 2 85%
0x31 0x6 0x0 0x0 2 90%

The Set Value Error Frame Counter can be computed by the choosen baud rate:

SetVal = (5.000.000 * bit-time * 10) / baud rate

 5 The Step7 user interface

44
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

For 200 kBit/s and a bit-time of 5.4 the right value is:
 SetVal = (5.000.000 * 54) / 200.000
 SetVal = 1.350 dez = 546 hex

5.2.4 Additional information in the instance DB of CAN_INIT_COM168

The user can obtain additional information in the instance DB of the INIT function
block:

Table 5-7 Information in the instance DB of CAN_INIT_COM168

Name In/
Out

Comment

C_IF.FB_VERSION Out Version of Step7-FBs
C_IF.DLL_VERSION In Version of driver RTDLL
C_IF.COM168_SW_VER In SW version COM168
C_IF.COM168_HW_VER In SW version des COM168
C_IF.COM168_FBL_VER In Firmware bootloader version COM168
C_IF.COM168_FPGA_VER In FPGA version COM168

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 45

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.2.5 Initialisation with CAN_INIT_C_CAN

If you want to use the CAN on-board interface of the Nanobox IPC227D you have
to call this function block.

 !
Attention

The function block CAN_INIT_C_CAN may not be used at same time as
INIT_CAN_COM168 or CAN_INIT_SJA1000 because the driver does support
only one type of CAN hardware at one time.

Table 5-8 Parameter des FBs CAN_INIT_C_CAN

Parameter In/
Out

Type Description

STARTUP In Bool Flag for first call
DB_CAN_SEND In Block_DB Instance DB of FB CAN_SEND *1)
DB_CAN_RECV In Block_DB Instance DB of FB CAN_RECV *1)
DB_CAN_GET_STATU
S

In Block_DB Instance DB of FB CAN_GET_STATUS *1)

REQ In Bool Request for INIT CAN (positive edge)
USE_SHUTDOWN In Bool Use shutdown message
CAN_PARAM In UDT_CAN_C

FG_C_CAN
Parameters of CAN interface C_CAN

SHUTDOWN_MSG In UDT_CAN_M
SG *2)

CAN message sent in transition RUN
STOP

BUSY Out BOOL Set; if the FB is still busy
DONE Out BOOL Is set, if the FB has finished (with error or

without error)
ERROR Out BOOL If set, an error occurred. STATUS gives

detailed information about the error.
STATUS Out WORD Error information

*1) The numbers of the instance DBs have to be given with the first call (STARTUP
= TRUE).
*2) See Table 5-12 “UDT for CAN telegram UDT_CAN_MSG”, pg. 47

Table 5-9 Definition of UDT UDT_CAN_CFG_C_CAN

Parameter In/
Out

Type Description

BAUD_CAN In Int Baud rate for CAN *1)

*1) The baud rate for the CAN interface is defined by the following values:
 0 - 1 MBit/s
 1 - 800 KBit/s
 2 - 500 KBit/s

 5 The Step7 user interface

46
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

 3 - 250 KBit/s
 4 - 125 KBit/s
 5 - 100 KBit/s
 6 - 50 KBit/s
 7 - 20 KBit/s

5.2.6 Additional information in the instance DB of CAN_INIT_C_CAN

The user can obtain additional information in the instance DB of the INIT function
block:

Table 5-10 Information of instance DB of CAN_INIT_C_CAN

Name In/Out Bemerkung

C_IF.FB_VERSION Out Version of Step7-FBs of the driver
C_IF.DLL_VERSION In Version driver RTDLL

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 47

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.3 Send CAN telegrams with CAN_SEND

The function block CAN_SEND sends one CAN telegram over the chosen channel
(only COM168). The telegram is not send directly but is copied into the Tx-FIFO.
The real-time CAN driver transfers the message from the Tx-FIFO to the CAN chip
(see chapter 2.1 “Functional range”, pg. 8).

Table 5-11 Parameters of FBs CAN_SEND

Parameter In/
Out

Type Description

CHANNEL In Byte Channel-No
 SJA1000, C_CAN: 0
 COM168: 0, 1

CANMSG In UDT_CAN_MSG The CAN telegram to send.
STATUS Out WORD Error information
ERROR Out BOOL If set, an error occurred. STATUS gives

detailed information about the error.

Table 5-12 UDT for CAN telegram UDT_CAN_MSG

Parameter Typ Beschreibung

IDENT Dword Identifier (11 / 29 bit)
DATA_LEN Byte Data length
REMOTE Bool Remote bit (TRUE = active)
EXTENDED Bool Extendet identifier (TRUE = 29 bit)
DATA Array[1..] of

Byte
Telegram data

 5 The Step7 user interface

48
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.4 Receive CAN telegrams with CAN_RECV

The real-time CAN driver stores all received CAN telegrams in the internal Rx-
FIFO. The function block CAN_RECV reads one telegram from the Rx-FIFO (see
chapter 2.1 “Functional range”, pg. 8).
If the WinAC program reads so slow the Rx-FIFO will overflow. The function block
CAN_RECV will return a corresponding error code. Both bits ERROR and NDR are
set in this case.

Note A wire break is not recognized by CAN_RECV!

 !
Attention

The COM168 can not receive remote frames, e.g. CAN telegrams with
remote bit set.

Table 5-13 Parameters of FBs CAN_RECV

Parameter In/
Out

Type Description

CHANNEL In Byte Channel-No
 SJA1000, C_CAN: 0
 COM168: 0, 1

CANMSG Out UDT_CAN_MSG *1) The received CAN telegram.
STATUS Out WORD Error information
ERROR Out BOOL If set, an error occurred. STATUS gives

detailed information about the error.
NDR Out BOOL New Data Received – if set, a new telegram

was received.

*1) See Table 5-12 “UDT for CAN telegram UDT_CAN_MSG”, pg. 47

 5 The Step7 user interface

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 49

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

5.5 Get CAN status with CAN_GET_STATUS

With this function block you will get a number of status information of the CAN
interface.

Table 5-14 Parameters of FB CAN_GET_STATUS

Parameter In/Out Type Description

STATUS Out WORD Error information
ERROR Out BOOL If set, an error occurred. STATUS gives detailed

information about the error.

The status information of the CAN channels is stored in the instance DB of the
function block. For the SJA1000 only the first is used, for COM168 both structures
are used.

Table 5-15 Status information of one CAN channel UDT_CAN_STATUS

Parameter In/
Out

Type Description

STATUS.RUN Out Bool CAN is running
STATUS.CAN_ERROR Out Bool CAN error occurred
STATUS.BUS_OFF Out Bool CAN ‚bus off’
STATUS.PASSIVE Out Bool CAN ‚passive error’
STATUS.RX_OVERFLOW Out Bool CAN ‚receive buffer Overflow’
STATUS.TX_ERROR Out Bool CAN ‚transmit error’
RX_MSG_COUNT Out DWord Received messages total
RX_BYTE_COUNT Out DWord Received bytes total
TX_MSG_COUNT Out DWord Transmitted messages total
TX_BYTE_COUNT Out DWord Transmitted bytes total
REM_TX_COUNT Out DWord Remote Frames total
ERR_FRAME_COUNT Out DWord Error frame count

 !

Attention

Note on SJA1000: if the bit “error occurred” is set by a wire break, this bit
can not be resented by a CAN_INIT_SJA1000. This bit is only cleared by a
hardware reset (property of SJA1000).

 6 Examples for applications

50
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6 Examples for applications
The driver package includes two different examples.
The first example shows how to send / receive CAN telegrams.
In the second example shows a simple implementation of CANopen as part of the
application. The send/receive function blocks are used to automatically update the
process image. The whole CAN functionality is encapsulated in one function block
(FB61010 CAN_UPDATE_PI). In this example two different CANopen DI/DO
modules are used.

Both examples are available for Step7 V5.x and for Step7 V11 (TIA Portal). Both
versions have the same functionality. Because of the differences of both
engineering systems, the examples look a little bit different in details.

Figure 6-1 WinAC CAN driver function blocks in Step7 V5.x

Figure 6-2 WinAC CAN driver function blocks in TIA Portal V11 SP2

 6 Examples for applications

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 51

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6.1 Example 1 – CAN send/receive

In this example you can send / receive single telegrams with triggers (see variable
table). Communication partners are CANopen devices.

 !
Attention

Matching your hardware (on-board / COM168) you have to call the right
INIT FB in OB1 and OB100!

OB100 Complete Restart
In the OB100 the CAN driver is initialized with STARTUP bit is set (First run). The
numbers of the instance DBs are giben.
ATTENTION
You have to use the right INIT function block matching your hardware!

OB1 CYCL_EXEC
In the first network the CAN interface is initialised. This is done by a rising edge of
the REQ bit. The CANopen telegram for “Pre-operational state” is used as
shutdown telegram. When the WinAC changes from RUN to STOP this telegram is
sent automatically – all CANopen devices switch to the “pre-operational state”
immediately.
ATTENTION
You have to use the right INIT function block matching your hardware!
The processing of the following networks takes place after CAN_READY is set.
In the following networks different prepared CAN telegrams can be sent by trigger
bits (see variable table).
In the last networks you can receive CAN telegrams and ask for the CAN status
(also done by trigger bits).

DB10000 DB_CAN
This data block contains a number of variables used by various parts of the
program. Thus the complete example can work without usage of flags.

DB10001 DB_MSG_SEND
In this data block some CAN telegrams are prepared for sending. The
UDT_CAN_MSG is used for the right structure of the messages. In the example
four telegrams are prepared for communication with CANopen devices.
 Command “Operational state”
 Command “Pre-operational state”
 Command “Set digital outputs” (CANopen device with Dos)
 Free user command

 6 Examples for applications

52
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

DB10002 DB_MSG_RECV
This data block contains one telegram for receiving.

UDT61000 UDT_CAN_CFG_COM168
Configuration of both CAN channels of the COM168 card. It includes the baud rate
for both channels.

UDT61001 UDT_CAN_CFG_SJA1000
Configuration for the on-board interface of the Microbox IPC427B/C (SJA1000
chipset). It includes the base address, IRQ number and baud rate.

UDT61002 UDT_CAN_MSG
Definition of the structure of on CAN telegram.

UDT61003 UDT_CAN_STATUS
Definition of the structure for the status of one CAN channel.

UDT61004 UDT_CAN_CFG_C_CAN
Configuration for the on-board CAN interface of the Nanobox IPC227D (C_CAN
chipset): baud rate of the CAN bus.

 6 Examples for applications

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 53

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

6.2 Example 2 – process image with CANopen devices

This example shows how to use two CANopen devices (digital I/O). The function
block FB_UPDATE_PI determines the current process image with sent / received
CANopen telegrams.
After initialisation of CAN automatically the CANopen telegram for “Operational
state” is sent. If you want to adjust some CANopen parameters (like guarding time)
you have to send the corresponding telegrams before changing to “Operational
state”.
This updating of the process image is encapsulated in one FB (FB61010
CAN_UPDATE_PI).

 !
Attention

Matching your hardware (on-board / COM168) you have to call the right
INIT FB in FB61010 CAN_UPDATE_PI!

It is called at two places in this FB!

Note In this example in every cycle all process output data is written. If you use a
small cycle time you will get a high CAN bus load!

To prevent this you only have to send changes of the process output data or to
move the process image update in a slow cyclic OB.

OB100 Complete Restart
In the OB100 the FB UPDATE_PI is called with STARTUP bit set.

OB1 CYCL_EXEC
In the beginning the process image is updated by caling FB UPDATE_PI. This FB
works with the process image on DB1001 DB_CAN_PI_IN and DB1002
DB_CAN_PI_OUT.
After that the data is used for some manipulation.

FB61010 UPDATE_PI
In this function block the whole CAN processing is encapsulated.
In network 1 some internal variables are initialised during startup.
The following program is realised as step sequence:
 Step 1 – load driver

In this sep the CAN driver is loaded. The instance DBs of the CAN FBs are
given.
ATTENTION
You have to use the right INIT function block matching your hardware!

 6 Examples for applications

54
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

 Step 2 – Init the CAN interface
In this step the CAN channel(s) are initialised. The CAN configuration is given.
The CANopen telegram for “Pre-operational state” is used as shutdown
telegram. When the WinAC changes from RUN to STOP this telegram is sent
automatically – all CANopen devices switch to the “pre-operational state”
immediately.
ATTENTION
You have to use the right INIT function block matching your hardware!

 Step 3 – CANopen “Operational state”
This step sends the CANopen telegram “Operational state” to switch all the
devices to this state.

 Step 4 – Update the process image
In this step all output values are sent to the CANopen devices with the
corresponding CANopen telegrams.
Additional all received telegrams are processed to update the input values of
the process image.

This function block has to input parameters – the datablocks containing the current
process image.
An important element of the function block is the temporally telegram MSG
(UDT_CAN_MSG). It is used for sending and receiving CAN telegrams.
To update the outputs of the process image the corresponding CANopen
telegrams are sent to the CANopen devices.
First the telegram is initialised. After that the CANopen telegram is composed for
the CAN device, e.g.
 Ident = 22Ah (200h + Node ID 2Ah)
 Length = 8 Bytes
 Data DO0, DO1

After composing this telegram it is sent by CAN_SEND.

The update of the process image inputs is done by processing all telegram. In the
loop all telegrams are read from the RxFIFO by CAN_RECV. These telegrams are
analysed and the new input values are copied to the datablock for the input data:
First the temporally telegram MSG is initialised. Then one telegram is picked up
(CAN_RECV). If NDR bit is set, the identifier is separated to module address and
object number.
In the following networks object number and module address are processed. The
data is copied to the matching address in the process image input data block.
This loop is processed until no CAN telegram is delivered by CAN_RECV.
At least the status of the CAN interface is updated.

DB1001 DB_CAN_PI_IN / DB1002 DB_CAN_PI_OUT
These data blocks contain the current process image provided by the CANopen
devices.

 6 Examples for applications

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 55

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

UDT61000 UDT_CAN_CFG_COM168
Configuration of both CAN channels of the COM168 card. It includes the baud rate
for both channels.

UDT61001 UDT_CAN_CFG_SJA1000
Configuration for the on-board interface of the Microbox IPC427B/C (SJA1000
chipset). It includes the base address, IRQ number and baud rate.

UDT61002 UDT_CAN_MSG
Definition of the structure of on CAN telegram.

UDT61003 UDT_CAN_STATUS
Definition of the structure for the status of one CAN channel.

UDT61004 UDT_CAN_CFG_C_CAN
Configuration for the on-board CAN interface of the Nanobox IPC227D (C_CAN
chipset): baud rate of the CAN bus.

 7 Error Codes

56
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

7 Error Codes
The WinAC CAN-Basis driver can provide different classes of error messages:
- Code in the FB-output STATUS according to WinAC-ODK (see chapter 8.1 in

this document)
- Special error codes of the CAN-Basis driver (see chapter 8.2 on page 56 in this

document)

7.1 Error codes of WinAC ODK

The WinAC CAN-Basis driver had been developed with the WinAC ODK (Open
Development Kit). The ODK can also generate error codes, which are returned
from the STATUS of the FBs.

Table 7-1 WinAC ODK error messages

ODK
Code
(HEX)

Description

0 Success
8001 An exception occurred.
8002 Input: the ANY pointer is invalid.
8003 Input: the ANY pointer range is invalid.
8004 Output: the ANY pointer is invalid.
8005 Output: the ANY pointer range is invalid.
8006 More bytes were written into the output buffer by the extension object than

were allocated.
8007 ODK system has not been initialized: no previous call to SFB65001

(CREA_COM).
8008 The supplied handle value does not correspond to a valid extension object.
8009 More bytes were written into the input buffer by the extension object than

were allocated.
807F An internal error occurred.
80C3 Maximum number (32) of parallel jobs/instances exceeded.
8102 The call to CLSIDFromProgID failed.
8103 The call to CoInitializeEx failed.
8104 The call to CoCreateInstance failed.
8105 The library failed to load.
8106 A Windows response timeout occurred.
8107 Controller is in an invalid state for scheduling an OB.
8108 Schedule information for OB is invalid.
8109 Instance ID for SFB65001 call is invalid.
810A Controller could not load proxy DLL.
810B The WinAC controller could not create or initialize shared memory

area.
810C Attempt to access unavailable option occurred.
8201 The Execute command index could not be found

 7 Error Codes

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 57

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

ODK
Code
(HEX)

Description

8250 No more available positions in the job list
8252 The count is invalid
8253 A data type of an item in the list is invalid
8254 The count specified is invalid
8255 A memory area of an item in the list is invalid
8256 A DB number of an item in the list is invalid
8257 A bit number of an item in the list is invalid
8258 A pBuff of an item in the list is invalid
8259 A data quantity is invalid
825A The area offset parameter is invalid for this type
825B The frequency value is invalid
825C The callback pointer is invalid
825D The job ID pointer is invalid
825E The job ID is invalid
825F Job could not be completed because address is incorrect
8260 Job could not be completed because of protection level
8261 Job could not be completed because of hardware issues
8301 Invalid Thread Execution Priority
8401 Invalid Asynchronous Event
8402 Asynchronous Processor Queue is empty
8403 Asynchronous Processor Queue is full

 7 Error Codes

58
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

7.2 Special error codes of the CAN Basis driver

Among the general error bit of the driver FBs there is a special error code in the
value of STATUS to describe the reason of the problem.

Table 7-2 Error codes of CAN-Basis driver

 0 - no error

 errors of Sja1000 driver
0x8500 - error creating receive event
0x8501 - error creating transmit trigger event
0x8502 - error creating transmit polling thread
0x8503 - error setting transmit trigger event
0x8504 - error creating receive ISR/polling thread
0x8505 - receive event not defined
0x8510 - no SJA 1000found
0x8511 - more than one SJA1000 found
0x8512 - given base address differs from found base address
0x8513 - error reaching Reset mode during searching SJ1000
0x8514 - wrong SJA1000 mode (only BasicCAN and PeliCAN)
0x8515 - SJA1000 controller does not enter Reset Mode
0x8516 - SJA1000 controller does not leave Reset Mode
0x8517 - error register interrupt service routine
0x8518 - base address of SJA100 not defined
0x8519 - undefined code for baud rate
0x851A - baud rate unsupported
0x851B - SJA1000 transmit buffer not empty
0x851C - CAN telegram to long
0x851D - no receive data in buffer
0x851E - no receive data in FIFO
0x851F - no receive data in FIFO
0x8520 - undefined pointer for sending data
0x8521 - undefined pointer for receiving data
0x8522 - problem while transmitting data occured
0x8530 - CAN is not active (not initialized without error)
0x8551 - receive FIFO overflow (RxFIFO)
0x8552 - send FIFO overflow (TxFIFO)
0x8561 - Error RtGetClockTime() for start time
0x8562 - Error RtGetClockTime() for end time
0x8563 - internal table for time stamps is full
0x8564 - undefined ID for time stamp table
0x8570 - internal error #1

 7 Error Codes

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 59

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

0x8571 - internal error #2
0x8572 - internal error #3
0x8573 - internal error #4
0x8574 - internal error #5

 errors of COM168 driver
0x8801 - more than one COM168 found
0x8802 - RtTranslateBusAddress failed
0x8803 - Failure on RtMapMemory
0x8804 - RtAttachInterruptVectorEx failed
0x8805 - undefined CAN channel number
0x8810 - Cypress arbitration: got no access in waiting time
0x8811 - timeout setting Tx delay
0x8812 - undefined baudrate value
0x8813 - timeout setting baudrate
0x8814 - timeout initiating SW reset of COM168
0x8815 - no receive data in buffer of COM168
0x8816 - transmit buffer overflow COM168
0x8817 - got no abritation from COM168 for transmit
0x8818 - got no abritation from COM168 for receive
0x8819 - got no abritation from COM168 for status
0x8820 - undefined object for status request

0x8830 - no CAN config object given
0x8831 - bit rate parameter RJW out of range
0x8832 - bit rate parameter PSEG1 out of range
0x8833 - bit rate parameter PSEG2 out of range
0x8834 - bit rate parameter PROPSEG out of range

 errors with WinAC Handling (ODK part)
0x8901 - error using ODK_Read.. function
0x8902 - error using ODK_Write.. function
0x8911 - Step7 driver version does not match
0x8913 - false number for WinAC IRQ OB (only 52-54 allowed)
0x8921 - error creating event for signaling IRQ to WinAC
0x8923 - error creating event for signaling 'DeActivate ready'
0x8922 - multiple creation of IRQ monitor (perhaps multiple CAN_INI

 errors of asynchronous initialization
0x8A00 - error creating ODK object 'async. command'
0x8A01 - error creating internal init event

 7 Error Codes

60
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

0x8A02 - error creating init thread
0x8A03 - error: wait for init event abandoned
0x8A04 - error: wait for init event failed
0x8A05 - error: wait for init stopped undefined
0x8A06 - error: timeout while waiting for init event
0x8A07 - error killing init thread
0x8A08 - error closing thread handle
0x8A09 - error signaling the init event
0x8A0A - 'first call' bit not set in first call of initialization
0x8A0B - 'first call' bit is set in follow call of initialization

 errors of C_CAN driver
0x8b01 - no Bosch C_CAN interface found
0x8b02 - more than one Bosch C_CAN interface found
0x8b03 - wrong CAN mode (only Basic CAN and Extended CAN)
0x8b04 - wrong bit timing register values
0x8b05 - error calculating bit rate
0x8b06 - no MSI support signaled
0x8b07 - no valid data provided
0x8b08 - unsupported CANCLKSEL value
0x8b09 - unsupported CANDIV value
0x8b0a - send in bus-off called
0x8b0b - timeout when put object in CAN chip

 8 Related Literature

WinAC CAN Basic Driver
V1.4.0, Entry-ID: 48281517 61

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

8 Related Literature
8.1 Bibliography

This list is not complete and only represents a selection of relevant literature.
Table 8-1

 Subject Title

/1/ STEP7 Automation with STEP7 in STL and SCL
Hans Berger
Publisher: Vch Pub
ISBN-10 3895783412
ISBN-13 9783895783418

/2/

8.2 Internet Link Specifications

This list is not complete and only represents a selection of relevant information.
Table 8-2

 Subject Title

\1\ Reference to the
entry

http://support.automation.siemens.com/WW/view/en/EntryID

\2\ Siemens I IA/DT
Customer Support

http://support.automation.siemens.com

\3\

http://support.automation.siemens.com/WW/view/en/EntryID
http://support.automation.siemens.com/

 9 History

62
WinAC CAN Basic Driver

V1.4.0, Entry-ID: 48281517

C
op

yr
ig

ht

 S
ie

m
en

s
A

G
 2

01
2

A
ll

rig
ht

s
re

se
rv

ed

9 History

Table 9-1 Document history

Version Datum

V 1.1 17.06.09 AB Changes for new HW revision COM168
V 1.0 16.03.09 AB First version for delivery
V1.2 04.01.10 SC - tested with WinAC RTX 2009
V1.3 02.12.10 AB Improvement COM168 driver:

pre-defined and user-defined baud rates are possible
now

V1.4.0 20.07.12 AB New document layout
Added picture for HEX switch of COM168 board
Nanobox IPC227D with on-board CAN interface
additional supported (new function block, description
of installation, etc.)
TIA Portal example added
Support for Windows 7

	Warranty and Liability
	Table of Contents
	1 Automation Task
	1.1 Overview
	1.2 Needed Knowledge
	1.3 Required Hardware and Software Components

	2 Automation Solution
	2.1 Functional range
	2.2 High level CAN protocols
	2.3 Version of the driver

	3 Installation
	3.1 Quickstart
	3.2 Installation HW “Microbox CAN on-board interface” Windows XPe
	3.3 Install HW “COM 168” Windows XP
	3.3.1 Configure PCI slot
	3.3.2 Install COM168 as RTX device
	3.3.3 Check COM168 installation with “Com168Scan.rtss”

	3.4 Install HW “Nanobox CAN on-board Interface” (WES 7)
	3.4.1 Install CAN interface as RTX device
	3.4.2 Check installation with “CCanScan.rtss”

	3.5 Installation WinAC driver on runtime system
	3.6 Installation WinAC driver on engineering system

	4 Simatic projecting for CAN driver
	4.1 Component Configurator on runtime system
	4.2 Simatic Manager HW Config

	5 The Step7 user interface
	5.1 Multi instance FBs
	5.2 Initialisation of WinAC CAN Basis driver
	5.2.1 Initialisation with CAN_INIT_SJA1000
	5.2.2 Additional information in the instance DB of CAN_INIT_SJA1000
	5.2.3 Initialisation with CAN_INIT_COM168
	5.2.4 Additional information in the instance DB of CAN_INIT_COM168
	5.2.5 Initialisation with CAN_INIT_C_CAN
	5.2.6 Additional information in the instance DB of CAN_INIT_C_CAN

	5.3 Send CAN telegrams with CAN_SEND
	5.4 Receive CAN telegrams with CAN_RECV
	5.5 Get CAN status with CAN_GET_STATUS

	6 Examples for applications
	6.1 Example 1 – CAN send/receive
	6.2 Example 2 – process image with CANopen devices

	7 Error Codes
	7.1 Error codes of WinAC ODK
	7.2 Special error codes of the CAN Basis driver

	8 Related Literature
	8.1 Bibliography
	8.2 Internet Link Specifications

	9 History

